:: Inference Engine

Tested Dictionary



Type Word Relation Definition superscript subject object
d a ((a bRc) ≡ ((dRc) & (dIb) & (dJe))) & (e=indefinite)
ra about ABT postponed
rat above AB ((bIc) ≡ (dABb)) & ((bIc) ≡ (bABe)) & (c=point)
nun ada ((b=ada) → ((bIc) & (bId))) & (c=woman) & (d=individual)
rat after A ((bIc) ≡ (dAb)) & ((bIc) ≡ (bAe)) & (c=moment)
rat afterⁿ G ((bIc) ≡ (dGb)) & ((bIc) ≡ (bGe)) & (c=number)
ds an (an = a)
c andᶜ (b andᶜ c R d) ≡ (b.cRd)
ta anʳ redundant
di anyⁿ (b~R anyⁿ c) ≡ (bR no c)
nsd anyone (anyone = every person)
nsd anything (anything = every thing)
ta redundant
rat areᵃ J ((bJc) ≡ (cId)) & ((bJc) → (bIe)) & ((bJc) → (cIf)) & (d=property) & (e=thing) & (f=adjective)
rat areᵍ I ((bIc) ≡ (cId)) & ((eIf) ≡ (eIg)) & (d=conceptⁿ) & (g=instance)
nun aristotle ((b=aristotle) → ((bIc) & (bId))) & (c=man) & (d=individual)
rdiaa as AS (as=AS) & (((bASc) & (dRb)) ≡ (cRb))
rais at S ((bIc) ≡ (dSb)) & ((dIf) ≡ (dSb)) & (c=point) & (f=particle)
ra ate from ATF postponed
rat atⁱ M ((dMb) → (dIc)) & ((bIf) ≡ (dMb)) & (c=relationship) & (f=imagination)
rat atⁿ N ((bIc) ≡ (dNb)) & ((eIf) ≡ ((eNh) & (hGg))) & ((jIk) ≡ (mNg)) & ((nIo) ≡ (nNp)) & (f=whole) & (c=number) & (g=1) & (k=individual) & (p=0) & (o=contradiction)
ratab atᵖ ATC ((dPb) → (dIc)) & ((bIf) ≡ (dPb)) & (c=relationship) & (f=possible world)
rais atᵗ T ((dTb) → (dIc)) & ((bIf) ≡ (dTb)) & (c=relationship) & (f=moment)
na ball postponed
ra beᵃ J (beᵃ=J)
na bodyᶜ (c=bodyᶜ) & ((bIc) ≡ (((bWd) → (dIe)) & (bWf))) & (e=particle)
ra born BRN postponed
ra bornᵖ BRNP postponed
ra breaks BRK postponed
ra broke BRK postponed
na cake postponed
na can hit postponed
na casablanca postponed
na cat postponed
aa caught postponed
na causal role postponed
ra cause CA ((pCAq) ≡ ((bRc INMd Te) → ((fQg INMj Th) & (dCTGj) & (hSUTe)))) & (p⇿bRc INMd) & (q⇿fQg INMj)
ns class (class = conceptⁿ)
aa cold postponed
rs composed of (composed of = hasʷ)
n conceptᵇ (c=conceptᵇ) & ((bIc) ≡ (dHb)) & ((bIc) → (bIe)) & (e=non_whole)
n conceptⁿ (c=conceptⁿ) & ((bIc) ≡ (zIb)) & ((bIc) → (bIe)) & (e=non_whole)
n courage (b=courage) & ((cHb) ≡ (cJd)) & (d=courageous)
na courageous postponed
rai desire D ((dDb) → ((bIc) & (bJe))) & ((dDb) ≡ (dIf)) & (c=relationship) & (f=mind) & (e=openʳ)
rai desires D (desires=D)
ta did redundant
rz distinct from (b isʳ distinct from c) ≡ ~(b = c)
ta do redundant
ta does redundant
nc dog (c=dog) & (d=doglike) & ((bIc) ≡ (bJd))
ac doglike (c=dog) & (d=doglike) & ((bJd) ≡ ((bIc) & (bWe) & (bWg) & (eIh) & (gIk))) & (k=mind) & (h=bodyᶜ)
na door postponed
ra drank DRK postponed
ra drink DRK postponed
ra drinks DRK postponed
na earth postponed
ra eat from ATF postponed
db every (every bRc) ≡ ((zIb) → (zRc))
nsd everyone (everyone = every person)
r exist EX (exist=EX) & ((bEX) ≡ (bJc)) & (c=extant)
r exists EX (exists=EX) & ((bEX) ≡ (bJc)) & (c=extant)
aa extant ((bJc) → (cId)) & (d=property)
n familial part (c=familial part) & (((bIc) & (bOFd)) ≡ (bId))
na family postponed
n female (b=male) & (c=female) & ((dJc) → (d~Jb))
d few (few b Rc) ≡ (((dWe) ≡ ((eRc) & (eIb))) & ((fWg) ≡ ((g~Rc) & (gIb))) & (dNh) & (fNj) & (jGh) & (dWm) & (mRc) & (mIb) & (fWo) & (o~Rc) & (oIb))
rs fromᵇ (fromᵇ = bornᵖ)
rs greater than (greater than = afterⁿ)
aa green postponed
ns group (group = whole)
na hamlet postponed
ra has H (has=H)
r hasᶜʳ (causal role) HCA ((bHCAc) ≡ (bCAc)) & ((bHCAc) → (bHc))
r hasᵐ HM (haveᵐ=HM) & ((bHMc) ≡ (cIb))
r hasᵗ HAT (haveᵗ = HAT) & ((bHATc) ≡ (cTCHb))
rai hasʷ W ((bIc) ≡ (bWd)) & ((dIe) ≡ (bWd)) & (d=whole) & (e=part)
ra have H ((bHc) ≡ (cId)) & ((bHc) → (bIe)) & ((bHc) → (cIf)) & (d=propertyⁿ) & (e=thing) & (f=noun)
rs haveᵐ (haveᵐ=hasᵐ)
r haveᵗ HAT (haveᵗ = HAT) & ((bHATc) ≡ (cTCHb))
rai haveʷ W (haveʷ=W)
p he ((he Rb) ≡ ((cRb) & (cId) & (cJe))) & (c=he) & (d=person) & (e=male)
dc his ((his bRc) ≡ ((dRc) & (dIb) & (eOWNd) & (eIg) & (eJf))) & (f=male) & (g=person) & (e=he)
na house postponed
p i ((i Rb) → (iId)) & (d=person)
ratab in IN ((bINc) ≡ ((bId) & (cWb))) & (d=point)
rats in front of F ((bIc) ≡ (dFb)) & ((bIc) ≡ (bFe)) & (c=point)
r inᵇ INB ((bINBc) ≡ ((cWb) & (bId))) & (d=moment)
aa indefinite (b=indefinite) & ((cJb) ≡ ((cJj) & ((k≠c) → (k~Jj)) & ((eId) → ((fPg) & (¬fPh))))) & (f ⇿ e=c) & (cId)
nk individual (b=individual) & ((cIb) ≡ ((dIe) → ((d~Ic) & (d~Hc) & (d~Jc)))) & (e=thing)
a individualᵃ (c=individualᵃ) & ((bJc) ≡ (bId)) & (d=individual)
r inᵐ INM (bINMc) ≡ (((bWd) ≡ ((dSe) & (cWe))) & (bWf) & (fSg) & (hWg))
r inʳ INR (inʳ=INR) & ((bINRc) ≡ ((bSd) & (dINc)))
n instance (c=instance) & ((bIc) ≡ (bId))
n instanceⁱ (c=instanceⁱ) & (((bIc) & (bOFd)) ≡ ((bId) & (bIe))) & (e=instance)
ns instances (instances=instance)
n integer (c=integer) & ((bIc) ≡ (bGd)) & ((bIc) ≡ (eGb)) & ((bIc) ≡ (fNb)) & ((bIc) → (bIg)) & (g=non_whole)
ra is =
rai isᵃ J (isᵃ=J)
ra isᵉ EX ((bEX) ≡ (bJc)) & (c=extant)
rai isᵍ I (isᵍ=I)
ta isʳ redundant
de itsᵃ ((b R itsᵃ c) ≡ ((bRd) & (dIc) & (bHMd) & (bJf))) & (f=sexless)
ta itselfʳ redundant
nun jessica ((b=jessica) → ((bIc) & (bId))) & (c=woman) & (d=individual)
nun jfk ((b=jfk) → ((bIc) & (bId))) & (c=man) & (d=individual)
nun jim ((b=jim) → ((bIc) & (bId))) & (c=man) & (d=individual)
nun julius caesar ((b=julius caesar) → ((bIc) & (bId))) & (c=man) & (d=individual)
n kennedy (b=kennedy) & ((cIb) → (bId)) & (d=family)
a kennedyᵃ (b=kennedyᵃ) & (c=kennedy) & (((eJb) & (fIe)) ≡ (fIc))
aa large postponed
rats left of L ((bIc) ≡ (dLb)) & ((bIc) ≡ (bLe)) & (c=point)
nun leibniz ((b=leibniz) → ((bIc) & (bId))) & (c=man) & (d=individual)
ra live LV postponed
ra lives LV postponed
na logic postponed
ra love LOV postponed
na male (b=male) & (c=female) & ((dJb) → (d~Jc))
n man (b=man) & ((cIb) ≡ ((cId) & (cJe))) & (d=person) & (e=male)
de manyᵈ (manyᵈ b Rc) ≡ (((dWe) ≡ ((eRc) & (eIb))) & ((fWg) ≡ ((g~Rc) & (gIb))) & (dWm) & (mRc) & (mIb) & (fWo) & (o~Rc) & (oIb))
de manyⁿ (manyⁿ b Rc) ≡ (((dWe) ≡ ((eRc) & (eIb))) & ((fWg) ≡ ((g~Rc) & (gIb))) & (dNh) & (fNj) & (hGj) & (dWm) & (mRc) & (mIb) & (fWo) & (o~Rc) & (oIb))
nun marilyn ((b=marilyn) → ((bIc) & (bId))) & (c=woman) & (d=individual)
na mars natural
a material (c=material) & (d=particle) & ((bJc) ≡ (bId))
ns members (members=part)
a mental (c=mental) & ((bJc) ≡ (bTKd))
a mentalᵇ (c=mental) & ((bJc) ≡ (dTKb))
n mind (c=mind) & ((bIc) → (bTKz))
ns minds (minds=mind)
n moment (c=moment) & ((bIc) ≡ (dTb)) & ((bIc) ≡ (bAh)) & ((bIc) ≡ (eAb)) & ((bIc) → (bIf)) & (f=non_whole)
ns moments (moments=moment)
na movie postponed
na munich postponed
na murder postponed
dc my ((my bRc) ≡ ((dRc) & (dIb) & (iOWNd)))
na nazi postponed
db no (no bRc) ≡ ((zIb) → (z~Rc))
n non_whole (c=non_whole) & ((bIc) ≡ ((dIe) → (b~Wd))) & (e=thing)
m not (not = ~)
rs not distinct from (not distinct from = is)
nsd nothing (nothing = no thing)
na now (b=now) → (cSb)
ns numberⁱ (numberⁱ=integer)
ns numbersⁱ (numbersⁱ = integer)
ra of OF postponed
ta onʳ redundant
ra own OWN postponed
ra owns OWN postponed
n part (c=part) & ((bIc) ≡ (dWb))
ns partᶠ (partᶠ=familial part)
a partially materialᵃ (property) (b=partially materialᵃ) & ((cJb) ≡ ((dWf) & (fIg) & (dJc) & (dWh) & (hIk))) & ((cJb) → (cIe)) & (e=property) & (g=bodyᶜ) & (k=mind)
n particle (c=particle) & ((bIc) ≡ (bSd)) & ((bIc) ≡ (hTg)) & ((bIc) → (bIf)) & (f=non_whole) & (g=now) & (h⇿bSd)
ns particles (particles=particle)
ta particular redundant
n partᵖ (c=partᵖ) & (((bIc) & (bOFd)) ≡ (dWb))
na party postponed
n person (c=person) & (d=personhood) & ((bIc) ≡ (bHd))
n personhood (c=personhood) & ((bHc) → ((bId) & (zTKw) & (zDx) & (bWz) & (bWy) & (yIe))) & (d=person) & (e=bodyᶜ)
as physical (physical=material)
nun plato ((b=plato) → ((bIc) & (bId))) & (c=man) & (d=individual)
n point (c=point) & ((bIc) ≡ (dSb)) & ((bIc) ≡ (eABb)) & ((bIc) ≡ (bABm)) & ((bIc) ≡ (fFb)) & ((bIc) ≡ (bFj)) & ((bIc) ≡ (gLb)) & ((bIc) ≡ (bLk)) & ((bIc) → (bIh)) & (h=non_whole)
ns points (points=point)
n property (c=property) & ((bIc) ≡ (dJb)) & ((bIc) → (bIe)) & (e=non_whole)
n propertyⁿ (c=propertyⁿ) & ((bIc) ≡ (dHb)) & ((bIc) → (bIe)) & (e=non_whole)
ra R R variable relation
ra reads RD postponed
a red (c=red) & ((bJc) → (bINMd))
n redness (c=redness) & ((bHc) ≡ (bJd)) & (d=red)
na relation (c=relation) & ((bIc) → (bId)) & (d=non_whole)
n relationship (c=relationship) & ((bIc) ≡ ((bWd) & (bWe) & (bWf) & (dIg) & (eIg) & (fIh))) & (g=relatum) & (h=relation)
na relatum (c=relatum) & ((bIc) ≡ (bRd)) & ((eIc) ≡ (fRe))
aa rewarded postponed
nun russell ((b=russell) → ((bIc) & (bId))) & (c=man) & (d=individual)
ta same redundant
ra saw SEE postponed
ra see SEE postponed
na set theory postponed
aa sexless postponed
ra shed SHD postponed
r smell SME ((bSME) → (bJc)) & (c=material)
r smells SME ((bSME) → (bJc)) & (c=material)
nun socrates ((b=socrates) → ((bIc) & (bId))) & (c=man) & (d=individual)
ds some (some=a)
ds someᵖ (someᵖ = manyᵈ)
nsd something (something = a thing)
na speed limit postponed
ra spied on SPD postponed
ra spies on SPD postponed
ra studied STD postponed
ra study STD postponed
n superset (c=superset) & (((bIc) & (bOFd)) ≡ ((dWe) → (bWe)) & ((bWf) → ((gPh) & (¬gPj))) & (g⇿dWf)
ra teach TCH postponed
na teacher postponed
ra teaches TCH postponed
na tear postponed
ns tears (tears=tear)
ds thatᵈ (thatᵈ=the)
d the ((the bRc) ≡ ((dRc) & (dIb)))
ta theʳ redundant
nt there (there EX b) ≡ (bEX)
na thing See atomic categories
rai think TK (think=TK)
rai thinks TK (thinks=TK)
ds this (this=the)
na thisⁿ (thisⁿ Rc) ≡ (bRc)
n thought (c=thought) & ((bIc) ≡ (dTKb)) & ((bIc) → (bIe)) & ((bIc) ≡ (bMf)) & (e=relationship)
ns thoughts (thoughts=thought)
nu time (b=time) ≡ ((eTd) ≡ (bWd))
ra took TAK postponed
ns universal (universal = conceptⁿ)
na van postponed
ra was = (was = =)
ra wasᵃ J (wasᵃ=J)
ra wasᵉ EX (wasᵉ = EX)
ra wasᵍ I (wasᵍ=I)
ta wasʳ redundant
na water postponed
u which (bRc which Qd) ≡ ((bRc) & (cQd))
aa white postponed
u who ((bRc who Qd) ≡ ((bRc) & (cQd) & (bIe))) & (e=person)
n whole (c=whole) & ((bIc) ≡ (bWd))
ns wholeᶜ (fallacious) (wholeᶜ = conceptⁿ)
ta willʳ redundant
n woman (b=woman) & ((cIb) → ((cId) & (cJe))) & (d=person) & (e=female)
nun xenothon ((b=xenothon) → ((bIc) & (bId))) & (c=man) & (d=individual)
p you ((you Rb) → ((cRb) & (cId))) & (c=you) & (d=person)
dc your ((your bRc) ≡ ((dRc) & (dIb) & (eIf) & (eOWNd))) & (e=you) & (f=person) '